• 0 Posts
  • 45 Comments
Joined 1 year ago
cake
Cake day: July 3rd, 2023

help-circle







  • Search the literature for thermal stratification. There are many contexts where it is used outside of lakes and other large bodies of water, many of which do not consist of three distinct layers. Hell, the paper I cited SPECIFICALLY refers to the temperature gradient in the microwaved glass as “stratification”.

    If you can’t understand the use of a term outside your specific area of expertise then thats honestly a you problem and that’s all I can say on that.

    If the heating methods were as similar as you say, there wouldn’t be hundreds of publications accepted to various journals across the past two decades investigating the problem where microwaves produce a strong temperature gradient between the top and bottom of a body of liquid. It’s a well known process control problem.


  • That’s not really showing temperature stratification which is a more extreme separation of temperature from surface

    I think the definition you are using is far too restrictive, in many contexts temperature stratification simply refers to a situation where you get temperature gradients across a fluid with the warmer fluid gathered near the top of the body. For example, in a factory you will often have “destratification” fans operating because warm air from equipment rising to the ceiling results in a temperature gradient from floor the ceiling.

    It is not a phenomena exclusive to surface heating.

    That’s just showing that the hottest atoms gather to the top, which btw, proves Convection currents.

    Yes. My point was not to establish that convection is magically absent from fluids in microwaves, but to establish that it differs significantly from stovetop heating. Convection currents in stovetop heating create a strong stirring action that produces a substantially uniform temperature. Microwaves do not create the same stirring action and this produce a significant nonuniform temperature gradient.

    The modified glass is just diverting the hotpots to the bottom to make the convection less “unusual”.

    Clearly. They make the heating more akin to a stovetop, which is really the point here.

    They aren’t claiming that convection doesn’t accrue, only that it’s “unusual convection” resulting in less even heating like that of thermal stratification, not literal thermal stratification where the layers have separate convection currents that prevent mixing all together.

    Once again, you are using a definition of thermal stratification that is far too specific. However, arguing over it is really just being pedantic because the core point at issue here is whether or not heating a cup in a microwave or a stovetop produce the same final product. They do not unless you apply some mechanical agitation to mix it up.


  • I’m well aware of temperature stratification. It doesn’t happen in a microwave.

    It empirically does. We can argue about the theory all day but the research says microwaves produce stratified temperature gradients when heating liquids. However, I’d point out that, in atmosphere, when we have localized hot spots the warm air can effectively travel in bubbles without significant mixing for quite some distance. There seems to be a similar phenomena at work when microwaving liquids.

    See the screenshot below.

    I pulled this from “Multiphysics analysis for unusual heat convection in microwave heating liquid” published in 2020 in AIP Advances.

    Relevant excerpts:

    “ Usually, the fluidity of liquids is considered to make the temperature field uniform, when it is heated, because of the heat convection, but there is something different when microwave heating. The temperature of the top is always the highest in the liquid when heated by microwaves.”

    “ The experimental results show that when the modified glass cup with 7 cm metal coating is used to heat water in a microwave oven, the temperature difference between the upper and lower parts of the water is reduced from 7.8 °C to 0.5 °C.”

    “According to the feedback from Midea (microwave appliance makers), when users use the microwave oven to heat liquids such as milk or water, the temperature at the top of the liquid will be significantly higher than the temperature at the bottom.”





  • If you are in a cosmopolitan area there’s plenty of access to tea houses serving loose leaf Japanese and Chinese tea that would satisfy the most demanding tea enthusiast. That doesn’t begin to count the non-traditional items like boba, tisanes, etc.

    The USA doesn’t have much of a British style tea tradition, but that’s mostly because it’s a diverse nation and British tea and food is mostly crap to begin with. Why would the US drink British tea when there are so many alternatives that are actually good?



  • nBodyProblem@lemmy.worldtoComic Strips@lemmy.worldRelationships
    link
    fedilink
    arrow-up
    8
    arrow-down
    1
    ·
    4 months ago

    It’s absolutely guaranteed you won’t have the same feelings. People change and the new relationship dopamine wears off after a few years.

    However, building a life together is a special thing in its own right and that takes commitment to stay together and work on the relationship when times get tough.